SUBJECT: M.Sc in PHYSICS	After completion for the course student will able to
PROGRAMME OUTCOMES	PO1:Recall and describe fundamental concepts of classical mechanics, electromagnetism, quantum mechanics, and statistical mechanics.
	PO2:Explain the underlying principles and theories of advanced physics topics such as solid-state physics, nuclear physics, and particle physics.
	PO3:Apply mathematical techniques and physical principles to solve complex problems in theoretical and experimental physics.
	PO4:Analyze and interpret experimental data, identifying patterns and deriving conclusions about physical phenomena.
	PO5:Design and conduct experiments, integrating knowledge from different areas of physics to investigate new phenomena.
	PO6:Critically evaluate scientific research papers, assess the validity of methodologies, and judge the significance of results within the broader context of the field.
	PO7:Develop and propose innovative solutions to real-world problems by synthesizing concepts from various domains of physics.
	PO8:Lead and manage independent research projects, demonstrating advanced skills in project planning, execution, and communication of results.
	PO9:Demonstrate ethical conduct in scientific research and professional practice, upholding integrity and responsibility.
	PO10:Recognize the importance of lifelong learning and engage in continuous professional development to stay updated with advancements in the field of physics.
	PO11:Utilize advanced laboratory equipment and computational tools to conduct sophisticated experiments and simulations.
PROGRAMME SPECIFIC OUTCOMES	SO1:Identify and recall advanced concepts in specialized areas of physics, such as condensed matter physics, astrophysics, and quantum field theory.
	SO2:Summarize and interpret the latest developments and research findings in various branches of physics.
	SO3:Apply theoretical knowledge to perform advanced

	simulations and modeling of physical systems using software tools.
	SO4:Analyze complex physical systems and break down their components to understand their functioning and underlying principle.
	SO5:Integrate knowledge from various subfields of physics to design innovative experiments and propose new theoretical models.
	SO6:Evaluate experimental results and compare them with theoretical predictions to validate or refute existing theories.
	SO7:Formulate new hypotheses based on existing knowledge and design experiments to test these hypotheses.
	SO8:Collaborate with interdisciplinary teams to address complex scientific problems and contribute to multi-disciplinary research projects.
COURSE	
OUTCOMES	
SEMESTER-1	
PHY- 411: Classical and Relativistic Mechanics	CO1:Analyze the principles of small oscillations and apply normal coordinates and normal modes to the vibration of linear symmetric molecules.
	CO2:Explain the concept of generalized coordinates for rotation and describe rotation as an orthogonal transformation.
	CO3:Derive the equations for the general motion of a rigid body using Euler angles and calculate angular momentum and kinetic energy in terms of Euler angles.
	CO4:Apply the inertia tensor and moments of inertia to solve problems involving the motion of a heavy symmetrical top.
	CO5:Examine the motion in a non-inertial frame of reference and calculate the effects of the Coriolis force.
	CO6:Use Poisson brackets to formulate equations of motion and identify canonical invariants.
	CO7:Apply Liouville's theorem to analyze the conservation properties in phase space.
	CO8:Generalize Newton's force equation to covariant form and

	derive the energy-momentum relation in relativistic mechanics.
PHY- 412 : Quantum Mechanics (I)	CO1:Explain the inadequacies of classical mechanics and describe the wave-particle duality and wave-packets.
	CO2:Apply the uncertainty principle and derive the Schrödinger equation.
	CO3:Analyze commuting observables and the removal of degeneracy, and evaluate the evolution of systems with time and constants of motion.
	CO4:Apply quantum mechanics to the rigid rotator and solve the radial equation for hydrogen and hydrogen-like atoms.
	CO5:Analyze symmetries under rotation, determine the algebra of the generators, and diagonalize the matrix representation of generators.
PHY-413: Mathematical Methods for Physics	CO1:Apply the residue theorem to evaluate integrals by the method of residues.
	CO2:Analyze multi-valued functions, including branch points and branch cuts, and perform contour integration involving branch points.
	CO3:Define linear vector spaces, determine linear independence, basis, and dimension, and apply the Cauchy-Schwarz inequality.
	CO4:Construct orthonormal bases using the Schmidt orthogonalization process and compute dual vectors and scalar products.
PHY- 414: Computer Programming	CO1:Describe the basics of programming languages and explain the components of a computer system.
	CO2:Identify constants, variables, and data types in C programming and apply operators and expressions in writing simple C programs.
	CO3:Perform input and output operations in C and write programs involving decision-making and branching.
	CO4:Implement decision-making and looping constructs in C programs to solve repetitive tasks.
	CO5:Utilize arrays and strings in C programs to manage collections of data.
	CO6:Create user-defined functions in C to modularize code

	and enhance reusability.
	CO7:Explain the concept of pointers and use pointers for dynamic memory allocation and manipulation of data.
	CO8:Define structures and unions in C and demonstrate their uses in complex data management.
	CO9:Implement file management operations in C to read from and write to files.
SEMESTER-2	
PHY-421 Electrodynamics	CO1:Explain Maxwell's equations and their significance in describing electromagnetic phenomena.
	CO2:Analyze the equation of continuity and conservation of charge, and apply the Lorentz force law.
	CO3:Derive Poynting's theorem and explain the conservation of energy and momentum using Maxwell's stress tensor.
	CO4:Describe electromagnetic potentials and perform gauge transformations, including Lorentz and Coulomb gauges.
	CO5:Solve the inhomogeneous wave equation for potentials using the Green function method and explain retarded potentials.
	CO6:Analyze the propagation of plane electromagnetic waves in free space, dielectrics, and conductors, and describe reflection, refraction, and polarization.
	CO7:Apply Fresnel's laws and the oscillator model to understand dispersion in various media, including dielectrics, conductors, and plasma.
	CO8:Explain the concepts of anomalous dispersion, resonant absorption, and the Kramers-Kronig dispersion relations.
	CO9:Derive retarded potentials and analyze fields and radiation due to an arbitrary system of charges and currents using multipole expansion.
	CO10:Calculate the emission of radiation in the electric dipole, magnetic dipole, and electric quadrupole approximations, and analyze simple radiating systems such as linear centerfed antennas.
PHY-422: Quantum Mechanics (II)	CO1:Describe the experimental evidence for spin angular momentum and explain Pauli's theory and spin wave functions.
	CO2:Analyze the properties of Pauli matrices and apply them to

	systems of two spin-12 $frac{1}{2}21$ particles.
	CO3:Explain the symmetry and anti-symmetry of wave functions, and apply the spin-statistics relation and Pauli exclusion principle.
	CO4:Demonstrate the implications of the Pauli principle and calculate the Fermi level in various systems.
	CO5:Apply time-independent perturbation theory to calculate energy levels and eigenfunctions up to the second order, and analyze the anharmonic oscillator problem.
	CO6:Differentiate between non-degenerate and degenerate cases in perturbation theory, and explain the removal of degeneracy in the Stark effect and helium atom problem.
	CO7:Utilize the W.K.B approximation to analyze turning points, bound states, and tunneling phenomena.
	CO8:Apply the Bohr-Sommerfeld quantization formula and estimate ground state and excited state energy levels using the variational principle.
PHY-423: Basic Electronics	 CO9:Explain the optical theorem and analyze low-energy scattering cases (1=0), scattering length, and effective range. CO1:Explain the concepts of T and Π\PiΠ networks and convert between these network forms using appropriate methods.
	CO2:Apply Foster's reactance theorem to analyze and simplify network circuits.
	CO3:Analyze transistor parameters and construct equivalent circuits for transistors in CE, CB, and CC configurations.
	CO4:Evaluate the small signal low and high frequency transistor circuits, and analyze the impact of the Miller effect and gain-bandwidth product.
	CO5:Explain the effect of cascading stages in amplifiers and apply feedback principles to analyze feedback circuits.
	CO6:Evaluate the advantages of master-slave flip-flop configurations and apply them to design robust sequential logic circuits.
PHY-424: Statistica Mechanics	CO1:Describe the fundamental concepts of kinetic theory, including binary collisions and the Boltzmann transport

	equation.
	CO2:Explain the H-theorem and derive the Maxwell-Boltzmann distribution law.
	CO3:Calculate the mean free path of particles in a gas and analyze its implications for kinetic theory.
	CO4:Explain the elements of ensemble theory, phase space, and the ergodic hypothesis.
	CO5:Apply Liouville's theorem to analyze the behavior of dynamical systems in phase space.
	CO6:Differentiate between micro-canonical, canonical, and grand-canonical ensembles, and calculate thermodynamic functions for each ensemble.
	CO7:Apply the equipartition theorem to classical ideal gases and explain Gibb's paradox.
	CO8:Analyze energy and density fluctuations in the canonical and grand-canonical ensembles, respectively.
	CO9:Describe the concept of the density matrix and apply Quantum Liouville's theorem to quantum systems.
	CO10:Explain the different ensembles in quantum mechanics and calculate equilibrium averages of observables.
IDC- 429: IDC or Open Elective Course (PHYSICS)	CO1: Describe the historical development of modern physics, from Galileo and Newton to Einstein, and explain their contributions to our understanding of the solar system, galaxies, and astrophysical objects, including the Big Bang cosmology.
	CO2: Analyze the structure and behavior of molecules, atoms, nuclei, and elementary particles, and discuss the methodologies used in their observation and experimentation across various laboratories.
	CO3: Explain the principles of nuclear physics, including binding energy, nuclear fusion, and fission, and evaluate their applications in nuclear reactors, nuclear medicine, X-rays, MRI, and PET/CT scans.
	CO4: Distinguish between the solid, liquid, and gaseous states of matter, and compare the properties and uses of metals, insulators, and semiconductors. Investigate the photoelectric effect, superconductivity, and novel materials, as well as the

principles of light, lasers, and heat engines.
CO5: Understand the fundamentals of electronics, including the operation of microphones, speakers, and amplifiers. Analyze the concepts of power generation and transmission, and describe the basics of computer systems and their applications.
CO1:Describe crystal structures and bonding in solids, and explain normal modes of mono- and diatomic lattices.
CO2:Analyze the salient features of dispersion curves and calculate the phonon density of states.
CO3:Apply quantum theory to determine heat capacity of solids and interpret the implications for lattice vibrations.
CO4:Explain the Sommerfeld theory of the free electron gas and calculate the density of states and electronic heat capacity.
CO5:Analyze the temperature dependence of the Fermi-Dirac distribution function and apply it to problems involving cyclotron resonance and the Hall effect.
CO6:Describe the AC conductivity and optical properties of materials, and apply concepts of thermionic emission.
CO7:Apply Bloch's theorem to analyze the nearly free electron model (NFEM) and tight-binding models, and solve problems using the Kronig-Penney model and effective mass concept.
CO8:Differentiate between intrinsic and extrinsic semiconductors, calculate carrier concentration, and analyze electrical conductivity and magnetic field effects.
CO9:Explain the Clausius-Mossotti relation, and analyze sources of polarizability, including dipolar dispersion, piezoelectricity, and ferroelectricity.
CO1: Lattice Dynamics and Energy Band Theory
Analyze Lattice Vibrations: Understand harmonic and
anharmonic approximations in lattice dynamics. Apply the Born- Oppenheimer approximation to the Hamiltonian for lattice vibrations, quantization, and phonons.
Study Electron Waves: Describe the wave equation for an electron in a periodic potential. Apply the Bloch-Floquet theorem to understand energy bands, Brillouin zones, and effective mass of an electron. Use the tight-binding approximation to model electron behavior in solids.

	CO2 Erwi Graftere
	CO2: Fermi Surfaces
	Understand Fermi Surfaces: Characterize and construct Fermi surfaces for metals. Analyze experimental techniques for studying Fermi surfaces, including the De Haas-van Alphen effect and cyclotron resonance.
	CO3: Beyond the Independent Electron Approximation
	Explore Advanced Theories: Apply the Hartree and Hartree- Fock equations to describe electron correlation and screening. Use the Thomas-Fermi theory to understand the dielectric function in materials beyond the independent electron approximation.
	CO4: Wannier Representation
	Utilize Wannier Functions: Define Wannier functions and their role in describing electronic states. Apply the equation of motion in the Wannier representation to study impurity levels and excitons. Analyze weakly bound and tightly bound excitons and their implications in solid-state physics.
PHY- 513: X-ray and Laser Spectroscopy	CO1:Describe Sommerfeld's extension of the Bohr theory and explain the vector atom model, including the quantum states of one-electron atoms.
	CO2:Analyze atomic orbitals and the hydrogen spectrum using Pauli's principle, and explain the effects of spin-orbit interaction and fine structure in alkali spectra.
	CO3:Apply intensity rules to determine the behavior of equivalent and non-equivalent electrons and calculate interaction energy in LS and jj coupling.
	CO4:Explain the Stark effect and analyze the spectral characteristics of two-electron systems.
	CO5:Analyze vibrational energy levels of diatomic molecules, treating them as simple harmonic oscillators, and explain the effects of anharmonicity and Morse potential on energy levels and spectra.
	CO6:Explain Raman spectroscopy and analyze its applications in molecular spectroscopy.
PHY-514: RESEARCH	CO1:Apply statistical concepts and procedures to analyze data and create diagrammatic representations of data.
METHODOLOGY	CO2:Calculate measures of central tendency, dispersion,

	1 11
	skewness, and kurtosis, and interpret their significance in data analysis.
	CO3:Analyze normal distribution and apply simple and multiple correlation techniques as well as regression analysis to data sets.
	CO4:Apply principal component analysis and design experiments using Completely Randomized Block Design, Randomized Block Design, and Latin Square Design.
SEMESTER - IV	CO5:Apply non-parametric procedures and plot graphs to represent statistical data effectively.
PHY- 521: Nuclear Physics	CO1:Describe the fundamental properties of nuclei, including composition, mass, charge, density, radii, spin parity, isospin, and statistical properties.
	CO2:Apply methods to measure nuclear size using nuclear and electromagnetic techniques, including electron scattering.
	CO3:Analyze the ground state of the deuteron with central forces and explain low-energy neutron-proton scattering, including concepts like scattering length and spin dependence of nuclear forces.
	CO4:Evaluate proton-proton and neutron-neutron scattering with elementary concepts and interpret their significance in nuclear interactions.
	CO5:Explain the exchange nature of nuclear forces and apply phenomenological nucleon-nucleon potentials to describe nuclear interactions.
	CO6:Apply the Breit-Wigner formula to analyze nuclear reactions and interpret its use in describing resonances.
PHY- 522: Particle Physics	CO1: Identify and classify elementary particles
	Demonstrate the ability to categorize particles into leptons, baryons, mesons, and gauge fields and trace the history of particle discovery and understand the evolution of particle physics.
	CO2: Analyze symmetries and conservation laws
	Apply conservation laws including energy, momentum, angular momentum, electric charge, lepton and baryon number to particle interactions.
	Interpret the Eight-Fold Way and the Gell-Mann Nishijima

	scheme and their implications for particle classification.
	CO3: Explain the quark model and its applications
	Illustrate the SU(3) symmetry group and its role in the classification of hadrons.Define and differentiate between color and flavor in the quark model.
	CO4: Evaluate methods for particle detection and radiation measurement
	Demonstrate understanding of radiation passage through matter and derive stopping power (dE/dx) for heavy charged particles.
	Compare and contrast various detection methods including G.M. counters, semiconductor detectors, bubble chambers, cloud chambers, spark counters, and Cherenkov detectors.
	CO5: Assess and describe particle accelerators and radiation sources
	Explain the operation principles of particle accelerators including Van de Graaff generators, cyclotrons, synchrotrons, linear and circular accelerators, and colliders.
	Discuss the role of these accelerators in particle physics research and their impact on radiation detection and particle studies. CO1: Magnetism
PHY -523: ELECTIVE PAPER-II(Condensed	COT. Magnetishi
Matter Physics (II))	 Understand Magnetic Properties: Describe diamagnetism, paramagnetism, and the related susceptibility concepts. Explain Langevin's equation, the Curie law, and quantum theories like Pauli paramagnetism. Discuss Landau levels and different types of magnetism (ferro, anti-ferro, ferrimagnetism). Analyze Magnetic Phenomena: Explain the Weiss molecular field, exchange interaction, and the temperature dependence of magnetism. Discuss ferromagnetic phase transitions, spin waves, magnons, and the Bloch T³/₂ law. Understand antiferromagnetic order and the Neel temperature. Magnetic Resonances: Provide a basic description of magnetic resonances such as Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR),
	and discuss their applications. Explain the Bloch equation. CO2: Superconductivity
	CO2. Superconductivity
	Characterize Superconductors: Discuss the fundamental

properties of superconductors, including flux exclusion (Meissner effect), London's equation, and the concept of Cooper pairs. Explain the BCS theory and its ground state, and compare theoretical results with experimental observations. Describe supercurrent and coherence length.
CO3: Types of Superconductors
• Different Superconductors: Differentiate between Type-I and Type-II superconductors. Provide an overview of high-temperature superconductors, heavy fermion superconductors, and fullerene superconductors.
CO4: Nanostructured Materials
• Understand Nanostructures: Introduce various types of nanostructured materials and discuss their mechanical, magnetic, and optical properties. Explain the size-dependent effects and derive the energy spectrum and density of states for quantum wells, quantum wires, and quantum dots using quantum mechanical solutions.